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Pattern formation became an active research field in recent

years. Reaction-diffusion systems serve as relevant models for

studying complex patterns in several fields of sciences.

A. M. Turing, Phil. Trans. R. Soc. Lond. 1952

The chemical basis of morphogenesis.

A fascinating idea proposed by Turing demonstrated that in a

homogeneous medium, spatially heterogeneous distributed

patterns can be produced from chemical reaction of two

substances with different diffusivities.
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Besides these regular patterns found in a neighborhood of

bifurcation induced by Turing’s instability, localized

structures such as fronts and pulses are also observed in

experiment and numerical simulation.

Pulses are self-organized patterns with profiles that are in

close proximity to a trivial background state except for one

or several localized spatial regions where changes are

substantial.

Localized structures represent states which are far away

from the homogeneous equilibrium.
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Particle-like structures are commonly observed in physical,

chemical and biological systems.





Depending on the system parameters and initial conditions,

localized dissipative structures may stay at rest or propagate

with a dynamically stabilized velocity. (Localized waves)



A well-known reaction-diffusion model for studying diffusion

-induced instability and emergence of patterns is the system of

FitzHugh-Nagumo equations:

ut −∆u =
1

d
(f(u)− v) u : activator

vt −∆v = u− γv v : inhibitor
(FN)

γ > 0 f : cubic polynomial

Suppose (u(x− ct), v(x− ct)) satisfies (FN), then when viewed

by someone moving with the speed c, this solution keeps the

same profile. Such a solution is referred to as a traveling wave,

while it is a stationary pattern or standing wave if c = 0.



We may consider the case c > 0 only; for otherwise, reverse the

direction of wave motion will do. Recall that

ut = uxx + f(u)− v

vt = ε(u− γv)

is a simplified model for the Hodgkin-Huxley system to describe

the electrical impulses in the axon of the squid. Here

(u, v) = (0, 0) is the rest state, and the nerve impulse is

generated by a finite excitation; the homogeneous ground state

relaxes the characteristic shape of the pulse. For ε << 1, the

existence of a traveling pulse has been treated as a singular

perturbation problem in which the pulse is constructed by

stitching together solutions of certain reduced systems.



For the nullclines in the (u, v) plane, if γ < 4/(1− β)2 the

straight line v = u/γ intersects the curve v = f(u) at one point

(0, 0) only.

Theorem. Let β ∈ (0, 1/2) be given.

(i) There exist γ̂ > 0 and d̂ = d̂(γ) > 0 such that if γ < γ̂ and

d < d̂, then there is a standing pulse solution (u, v) of (FN).

(ii) Both u and v are even functions on (−∞,∞) and satisfy

(u, v)→ (0, 0) as x→∞.

(iii) u changes signs exactly once in (0,∞) while v > 0 and

v′ < 0 on (0,∞).
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The profile of a standing pulse



The profile of a traveling pulse



There have been many interesting works on the traveling wave

solutions for scalar reaction-diffusion equation

ut = ∆u+ f(u).

A planar traveling wave satisfies an ordinary differential

equation; the existence question has been studied by various

methods. Lucia, Muratov and Novaga considered the functional

Ic[u] =

∫
R

(
1

2
u2
x + F (u))ecxdx,

where F (u) = −
∫ u

0 f(s)ds. Since Ic(w(· − a)) = eaIc(w), they

seek a minimizer uc of Ic under the constraint
∫
R u

2
xe
cxdx = 1.

When Ic[uc] ≤ 0, letting ĉ = c
√

1− Ic[uc] and û(x) = uc(ĉx/c),

they showed that û is a travelling wave with speed ĉ.



Heinze considered a different type of ansatz u(c(ξ − ct), y) in

the change of variables. Then a function satisfying

c2(uxx + ux) + ∆yu+ f(u) = 0

represents a traveling wave solution.

Let H denote the Hilbert space equipped with the norm

||u||H =
∫

Ω(u2
x + |∇yu|2 + u2)exdxdy, where Ω is a cylinder.

Heinze viewed a traveling wave solution û as a minimizer of∫
Ω

1
2u

2
xe
xdxdy subject to the constraint

{u ∈ H :
∫

Ω[1
2 |∇yu|

2 + F (u)]exdxdy = −1}. A stimulating

result of this approach is that the Lagrange multiplier is

nothing but 1
c2

, where |c| gives the wave speed.
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Following the ansatz proposed by Heinze, we study the

homoclinic solutions of
dc2uxx + dc2ux + f(u)− v = 0,

c2vxx + c2vx + u− γv = 0.

(1)

Indeed if (u, v) satisfies (1) for some c > 0, there is a traveling

wave to (FN).

In particular, if (u, v)→ (0, 0) as |x| → ∞ then

this is a traveling pulse solution.
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Let L2
ex = {u :

∫∞
−∞ e

x(u(x))2 dx <∞} be a Hilbert space

equipped with a weighted norm ‖u‖L2
ex
≡
√∫∞
−∞ e

x u2 dx.

The Green function G of the differential operator

(γ − c2 d2

dx2
− c2 d

dx) is a positive function given by

G(x, s) =


1

c
√
c2+4γ

e−r2s er2x, if x < s,

1

c
√
c2+4γ

e−r1s er1x, if x > s.

Here the solutions of the characteristic equation

c2r2 + c2r − γ = 0 are 1
2c(−c±

√
c2 + 4γ), denoted by r1 and r2

with r1 < −1 < 0 < r2.



Lc : L2
ex → L2

ex, since 1 + 2r1 < 0 and 1 + 2r2 > 0.

Set g(x, s) = e−sG(x, s). With r1 + r2 = −1, it is easily seen

that g(x, s) = g(s, x). For u1, u2 ∈ L2
ex,∫

R
exu1(x)Lcu2 (x) dx =

∫
R

∫
R
exesg(x, s)u1(x)u2(s) ds dx

=

∫
R

∫
R
exesg(s, x)u1(x)u2(s) dx ds

=

∫
R
esu2(s)Lcu1 (s) ds ;

that is, Lc : L2
ex → L2

ex is self-adjoint.

Lcu (x) =
er1x

c
√
c2 + 4γ

∫ x

−∞
e−r1s u(s) ds+

er2x

c
√
c2 + 4γ

∫ ∞
x

e−r2s u(s) ds
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Define F (ξ) = −
∫ ξ

0 f(η) dη = ξ4/4− (1 + β)ξ3/3 + βξ2/2.

Let H1
ex be a Hilbert space equipped with the norm

‖w‖H1
ex

=

√∫
R
exw2

x dx+

∫
R
exw2 dx .

Consider a functional Jc : H1
ex → R defined by

Jc(w) ≡
∫
R
ex{dc

2

2
w2
x +

1

2
wLcw + F (w)} dx .

If a ∈ R and w ∈ L2
ex then Lc(w(· − a)) = (Lcw)(· − a).

For any a ∈ R and w ∈ H1
ex, Jc(w(· − a)) = eaJc(w).



Define F (ξ) = −
∫ ξ

0 f(η) dη = ξ4/4− (1 + β)ξ3/3 + βξ2/2.

Let H1
ex be a Hilbert space equipped with the norm

‖w‖H1
ex

=

√∫
R
exw2

x dx+

∫
R
exw2 dx .

Consider a functional Jc : H1
ex → R defined by

Jc(w) ≡
∫
R
ex{dc

2

2
w2
x +

1

2
wLcw + F (w)} dx .

If a ∈ R and w ∈ L2
ex then Lc(w(· − a)) = (Lcw)(· − a).

For any a ∈ R and w ∈ H1
ex, Jc(w(· − a)) = eaJc(w).



Define F (ξ) = −
∫ ξ

0 f(η) dη = ξ4/4− (1 + β)ξ3/3 + βξ2/2.

Let H1
ex be a Hilbert space equipped with the norm

‖w‖H1
ex

=

√∫
R
exw2

x dx+

∫
R
exw2 dx .

Consider a functional Jc : H1
ex → R defined by

Jc(w) ≡
∫
R
ex{dc

2

2
w2
x +

1

2
wLcw + F (w)} dx .

If a ∈ R and w ∈ L2
ex then Lc(w(· − a)) = (Lcw)(· − a).

For any a ∈ R and w ∈ H1
ex, Jc(w(· − a)) = eaJc(w).



If w ∈ H1
ex(R) then


1
4

∫
R e

xw2 dx ≤
∫
R e

xw2
x dx ,

exw2(x) ≤
∫∞
x eyw2

y dy .

Lc(L2
ex) ⊂ H1

ex. In fact

‖Lcu‖H1
ex
≤ 2
√

5

c2
‖u‖L2

ex
.

For any w ∈ H1
ex,∫

R
exw2

x dx ≤ ‖w‖2H1
ex
≤ 5

∫
R
ecxw2

x dx;

in other words, ‖wx‖L2
ex

is an equivalent norm for H1
ex.
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
‖v‖L2

ex
≤ 4

c2
‖u‖L2

ex
,

‖v′‖L2
ex
≤ 2

c2
‖u‖L2

ex
,

0 ≤
∫
R e

x{c2(Lcu)′2 + γ(Lcu)2} dx =
∫
R e

xuLcu dx .

Let

A ≡ {w ∈ H1
ex :

∫
R
exw2

x dx = 2.}.

To seek traveling pulse solutions, we begin with studying the

functional Jc : A → R. Set J (c) ≡ infw∈A Jc(w).



Lemma. There exists a c̄ = c̄(d, β) > 0 such that if c ≥ c̄ then

J (c) > 0.

Proof. For w ∈ A, since the nonlocal term is non-negative,

Jc(w) ≥ dc2

2

∫
R
exw2

x dx+

∫
R
exF (w) dx

≥ dc2 −M2

∫
R
exw2 dx

≥ dc2 − 8M2

≥ 8M2 .

Clearly J (c) > 0 if c̄ = 4
√
M2/d.



The next step is to show that J (c) < 0 when c is small. Let

y = x/c and L̃c = (γ − d2

dy2
− c ddy )−1. For u ∈ A, if ũ(y) ≡ u(x),

it is easy to check that L̃cũ (y) = Lcu(x), so is ṽ(y) = L̃cũ(y)

Clearly u ∈ H1
ex if and only if

ũ ∈ H1
c (R) = {w :

∫
R e

cyw2
y dy <∞}. Similarly Lcu ∈ H1

ex if

and only if L̃cũ ∈ H1
c . A direct calculation gives

Jc(u) =

∫
R
ex{dc

2

2
(u′(x))2 + F (u(x)) +

1

2
u(x)Lcu (x)} dx

= c

∫
R
ecy{d

2
(ũ′(y))2 + F (ũ(y)) +

1

2
ũ(y) L̃cũ (y)} dy .



Consider a piecewise linear function defined by

q0(y) ≡


1, if 0 ≤ y ≤ a,
(b−y)
b−a , if a ≤ y ≤ b,

0, if y ≥ b.

With an even extension, q0 has a compact support on the real

line. It has been shown that there is a k1 > 0 such that∫
R
{d

2
q′20 + F (q0) +

1

2
q0 L̃0q0 } dy < 0

if d ≤ k1γ.



Lemma. Let c ≥ 0 and {cn}∞n=1 ⊂ [0,∞) such that

|cn − c| ≤ min{1, γ} and cn → c if n→∞. Suppose that there

exists a δ > 0 such that (c− δ)+ ≤ cn ≤ c+ δ. If w ∈ H1
s for all

(c− δ)+ ≤ s ≤ c+ δ, then

‖L̃cnw − L̃cw‖H1
c
≤ 2(1 + γ)

γ2
|cn − c| ‖w‖L2

c
.

Lemma. If d ≤ d0 then J (c) < 0 for c ∈ (0, c) .

Lemma. Let c > 0 and {cn}∞n=1 ⊂ (c/
√

2, c
√

3/
√

2) such that

cn → c as n→∞. Then there exists a M4 > 0 such that

‖Lcnw − Lcw‖H1
ex
≤M4 |c2

n − c2| ‖w‖L2
ex

for all w ∈ H1
ex. Here M4 is continuous in γ and c, and bounded

if c is bounded away from zero.
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Lemma. The function J : [c, c̄]→ R is continuous.

Lemma. There exists a c0 ∈ [c, c̄] such that J (c0) = 0.

Lemma. There is a u0 ∈ A such that Jc0(u0) = 0.

A Poincare type inequality shows that this solution decays to

(0, 0) at +∞. However, it is more delicate and usually requires

more efforts to investigate the asymptotic behavior of a

traveling wave near −∞ when such a solution is obtained from

a weighted function space like H1
ex via a variational approach In

some situations, for instance in case of scalar reaction-diffusion

equations, the maximum principle provides a help to complete

this task.
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We minimize Jc over the set of admissible functions in the class

−/+ /−. Roughly speaking, this is a topological constraint

which requires that the functions in the admissible set change

sign at most twice.

x
x1 x2



Let β < β1 < 1 < β2 satisfy F (β1) = F (β2) = 0. A continuous

function w is in the class −/+ /−, if there exist

−∞ ≤ x1 ≤ x2 ≤ ∞ such that w ≤ 0 on (−∞, x1]∪ [x2,∞), and

w ≥ 0 on [x1, x2]. The choice of x1, x2 is not necessarily unique.

For instance, if x1 = −∞ and x2 =∞, then w ≥ 0 on the real

line. In case x1 = x2 =∞, then w ≤ 0 on the real line. Both

examples are included in the class −/+ /−.



The qualitative properties of the global minimizer u0 can be

accessed by arguing indirectly and performing step by step

either local or global surgeries on u0 to generate a new function

unew ∈ A with Jc(unew) < Jc(u0).
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either local or global surgeries on u0 to generate a new function

unew ∈ A with Jc(unew) < Jc(u0).



Lemma. Suppose that unew ∈ H1
ex, a function after making

some changes on u0. Then the change in the nonlocal term is∫
R
ex(unew Lcunew−u0 Lcu0) =

∫
R
ex(unew−u0)Lc(unew+u0) .

Proof. It is a direct consequence of the fact that Lc is self

adjoint with respect to the L2
ex inner product.

Remark. If the support of unew − u lies inside a finite interval

[a, b], then the change in the nonlocal term can be calculated

within the same interval [a, b]. When unew − u is small, Lcunew
is close to Lcu on [a, b], even though the decay behavior and the

sign of Lcunew near infinity can differ from those of Lcu.



Lemma. Suppose that unew ∈ H1
ex, a function after making

some changes on u0. Then the change in the nonlocal term is∫
R
ex(unew Lcunew−u0 Lcu0) =

∫
R
ex(unew−u0)Lc(unew+u0) .

Proof. It is a direct consequence of the fact that Lc is self

adjoint with respect to the L2
ex inner product.

Remark. If the support of unew − u lies inside a finite interval

[a, b], then the change in the nonlocal term can be calculated

within the same interval [a, b]. When unew − u is small, Lcunew
is close to Lcu on [a, b], even though the decay behavior and the

sign of Lcunew near infinity can differ from those of Lcu.



Let u0 be a minimizer. The next lemma enables us to eliminate

the possibility that a sharp corner appears on the graph of u0.

Corner Lemma If x0 and ` > 0 are numbers such that

u0(x0) = 0 and u0 ∈ C1[x0 − `, x0] ∩ C1[x0, x0 + `], then

limx→x−0
u′0(x) = limx0→x+0

u′0(x).

The inherited technical difficulty associated with the topological

class A is partly alleviated.
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The idea for the proof of corner lemma.

We argue indirectly. Suppose u0(x0) = 0, limx→x−0
u′0(x) = a1

and limx0→x+0
u′0(x) = a2 with a1 6= a2. If u0 were straight lines

on either side of x0, then

u0(x) =

{
a1(x− x0) , if x0 − ` ≤ x ≤ x0,
a2(x− x0) , if x0 ≤ x ≤ x0 + `.

If the points (x0 − `, u0(x0 − `)) and (x0 + `, u0(x0 + `)) on the

graph of u0 is joined by a straight line, the slope of this line is

(a1 + a2)/2. This simple example gives a basic idea in the proof.



For a general C1 function u0, if `1 << `, then u′0(x) = a1 + o(1)

for x0 − `1 ≤ x ≤ x0; u′0(x) = a2 + o(1) for x0 ≤ x ≤ x0 + `1;

and the straight line y = L1(x) joining (x0− `1, u0(x0− `1)) and

(x0 + `1, u0(x0 + `1)) has a slope of (a1 + a2)/2 + o(1). Set

unew(x) =


u0(x), if x ≤ x0 − `1,
L1(x), if x0 − `1 ≤ x ≤ x0 + `1,
u0(x), if x ≥ x0 + `1.

Then

d

2

∫ x0+`1

x0−`1
{(unew)2

x − (u0)2
x} exdx

=
d

2
{
(

(a1 + a2)

2
+ o(1)

)2

2`1 − (a1 + o(1))2`1 − (a2 + o(1))2`1}

= −d`1
4

(
(a1 − a2)2 + o(1)

)
< 0 .



Employing the mean value theorem yields∫ x0+`1

x0−`1
{F (unew)−F (u0)} exdx = −

∫ x0+`1

x0−`1
f(ũ)(unew−u0) exdx

for some ũ lying in between u0 and unew. Since

unew − u0 = O(`1),

|
∫ x0+`1

x0−`1
{F (unew)− F (u0)} exdx | ≤ `1O(`1),

which is negligible compared with the change in the gradient

term of J .



Now turn to the nonlocal term of J . Since both |Lcu0| and

|Lcunew| are bounded and |unew − u0| = O(`1),

|1
2

∫ x0+`1

x0−`1
{unew Lcunew − u0 Lcu0} exdx | ≤ `1O(`1) ,

which is also negligible compared with the change in the

gradient term.

Therefore J(unew) < J(u0) with unew ∈ A. This contradicts u0

being a minimizer in A.



Lemma. Let ψ = u0 + αv0 . Then ψ is positive everywhere,

so

is v.

Theorem. Given β ∈ (0, 1/2) and γ < 4/(1− β)2, there is a

d̂ = d̂(γ) such that if d ≤ d̂ then for some c > 0, (FN) possesses

a traveling pulse solution (u0, v0). Moreover u0, v0 ∈ C∞(R)

and are exponentially decaying to 0 as |x| → ∞.
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Suppose that u0 ≥ 0 and oscillates infinite number of times near

−∞. Then u0 ≥ 0 on (−∞, z3]. For x1 < x2 < z3,

w1(x1, x2) ≡ dc2
0(u′0(x2)− u′0(x1) + u0(x2)− u0(x1))

=

∫ x2

x1

v0 dx−
∫ x2

x1

f(u0) dx ,

Then w1 is uniformly bounded for any choice of x1 and x2.

γ

∫ x2

x1

v0 dx−
∫ x2

x1

u0 dx = w2(x1, x2) .

w1 −
w2

γ
=

∫ x2

x1

{u0

γ
− f(u0)} dx ≥ m

∫ x2

x1

u0 dx

for some positive constant m, since the graph v = f(u) lies

underneath the line v = u/γ when u ≥ 0. Thus

0 <

∫ z3

−∞
u0 dx ≤M/m .



Remark

Suppose there exist a1 < b1 ≤ a2 < b2 ≤ a3 < b3 . . . in the

interval [x0 − `, x0] such that{
u0 < β2 on intervals (ai, bi), i = 1, 2, . . . ,
u0 = β2 on [x0 − `, x0] \ ∪∞i=1(ai, bi) ,

with both ai → x−0 and bi → x−0 , then u0 ∈ C1[x0 − `, x0) by

Corner Lemma.


