# Localized waves in FitzHugh-Nagumo equations 

Chao-Nien Chen

National Tsing Hua University

Joint work with

> Y.S. Choi

University of Connecticut

Pattern formation became an active research field in recent years. Reaction-diffusion systems serve as relevant models for studying complex patterns in several fields of sciences.

Pattern formation became an active research field in recent years. Reaction-diffusion systems serve as relevant models for studying complex patterns in several fields of sciences.
A. M. Turing, Phil. Trans. R. Soc. Lond. 1952

The chemical basis of morphogenesis.

A fascinating idea proposed by Turing demonstrated that in a homogeneous medium, spatially heterogeneous distributed patterns can be produced from chemical reaction of two substances with different diffusivities.

- Besides these regular patterns found in a neighborhood of bifurcation induced by Turing's instability, localized structures such as fronts and pulses are also observed in experiment and numerical simulation.
- Besides these regular patterns found in a neighborhood of bifurcation induced by Turing's instability, localized structures such as fronts and pulses are also observed in experiment and numerical simulation.
- Pulses are self-organized patterns with profiles that are in close proximity to a trivial background state except for one or several localized spatial regions where changes are substantial.
- Localized structures represent states which are far away from the homogeneous equilibrium.

Particle-like structures are commonly observed in physical, chemical and biological systems.




Depending on the system parameters and initial conditions, localized dissipative structures may stay at rest or propagate with a dynamically stabilized velocity. (Localized waves)


A well-known reaction-diffusion model for studying diffusion -induced instability and emergence of patterns is the system of FitzHugh-Nagumo equations:

$$
\begin{align*}
u_{t}-\Delta u & =\frac{1}{d}(f(u)-v) \quad u: \text { activator }  \tag{FN}\\
v_{t}-\Delta v & =u-\gamma v \quad v: \text { inhibitor } \\
\gamma & >0 \quad f: \text { cubic polynomial }
\end{align*}
$$

Suppose $(u(x-c t), v(x-c t))$ satisfies (FN), then when viewed by someone moving with the speed $c$, this solution keeps the same profile. Such a solution is referred to as a traveling wave, while it is a stationary pattern or standing wave if $c=0$.

We may consider the case $c>0$ only; for otherwise, reverse the direction of wave motion will do. Recall that

$$
\begin{aligned}
& u_{t}=u_{x x}+f(u)-v \\
& v_{t}=\varepsilon(u-\gamma v)
\end{aligned}
$$

is a simplified model for the Hodgkin-Huxley system to describe the electrical impulses in the axon of the squid. Here $(u, v)=(0,0)$ is the rest state, and the nerve impulse is generated by a finite excitation; the homogeneous ground state relaxes the characteristic shape of the pulse. For $\varepsilon \ll 1$, the existence of a traveling pulse has been treated as a singular perturbation problem in which the pulse is constructed by stitching together solutions of certain reduced systems.

For the nullclines in the $(u, v)$ plane, if $\gamma<4 /(1-\beta)^{2}$ the straight line $v=u / \gamma$ intersects the curve $v=f(u)$ at one point $(0,0)$ only.

For the nullclines in the $(u, v)$ plane, if $\gamma<4 /(1-\beta)^{2}$ the straight line $v=u / \gamma$ intersects the curve $v=f(u)$ at one point $(0,0)$ only.

Theorem. Let $\beta \in(0,1 / 2)$ be given.
(i) There exist $\hat{\gamma}>0$ and $\hat{d}=\hat{d}(\gamma)>0$ such that if $\gamma<\hat{\gamma}$ and $d<\hat{d}$, then there is a standing pulse solution $(u, v)$ of (FN).
(ii) Both $u$ and $v$ are even functions on $(-\infty, \infty)$ and satisfy $(u, v) \rightarrow(0,0)$ as $x \rightarrow \infty$.
(iii) $u$ changes signs exactly once in $(0, \infty)$ while $v>0$ and $v^{\prime}<0$ on $(0, \infty)$.

## The profile of a standing pulse



## The profile of a traveling pulse



There have been many interesting works on the traveling wave solutions for scalar reaction-diffusion equation

$$
u_{t}=\Delta u+f(u) .
$$

A planar traveling wave satisfies an ordinary differential equation; the existence question has been studied by various methods. Lucia, Muratov and Novaga considered the functional

$$
I_{c}[u]=\int_{\mathbf{R}}\left(\frac{1}{2} u_{x}^{2}+F(u)\right) e^{c x} d x
$$

where $F(u)=-\int_{0}^{u} f(s) d s$. Since $I_{c}(w(\cdot-a))=e^{a} I_{c}(w)$, they seek a minimizer $u_{c}$ of $I_{c}$ under the constraint $\int_{\mathbf{R}} u_{x}^{2} e^{c x} d x=1$. When $I_{c}\left[u_{c}\right] \leq 0$, letting $\hat{c}=c \sqrt{1-I_{c}\left[u_{c}\right]}$ and $\hat{u}(x)=u_{c}(\hat{c} x / c)$, they showed that $\hat{u}$ is a travelling wave with speed $\hat{c}$.

Heinze considered a different type of ansatz $u(c(\xi-c t), y)$ in the change of variables. Then a function satisfying

$$
c^{2}\left(u_{x x}+u_{x}\right)+\Delta_{y} u+f(u)=0
$$

represents a traveling wave solution.

Heinze considered a different type of ansatz $u(c(\xi-c t), y)$ in the change of variables. Then a function satisfying

$$
c^{2}\left(u_{x x}+u_{x}\right)+\Delta_{y} u+f(u)=0
$$

represents a traveling wave solution.
Let $\mathbf{H}$ denote the Hilbert space equipped with the norm $\|u\|_{\mathbf{H}}=\int_{\Omega}\left(u_{x}^{2}+\left|\nabla_{y} u\right|^{2}+u^{2}\right) e^{x} d x d y$, where $\Omega$ is a cylinder. Heinze viewed a traveling wave solution $\hat{u}$ as a minimizer of $\int_{\Omega} \frac{1}{2} u_{x}^{2} e^{x} d x d y$ subject to the constraint $\left\{u \in \mathbf{H}: \int_{\Omega}\left[\frac{1}{2}\left|\nabla_{y} u\right|^{2}+F(u)\right] e^{x} d x d y=-1\right\}$. A stimulating result of this approach is that the Lagrange multiplier is nothing but $\frac{1}{c^{2}}$, where $|c|$ gives the wave speed.

Following the ansatz proposed by Heinze, we study the homoclinic solutions of

$$
\left\{\begin{align*}
d c^{2} u_{x x}+d c^{2} u_{x}+f(u)-v & =0  \tag{1}\\
c^{2} v_{x x}+c^{2} v_{x}+u-\gamma v & =0
\end{align*}\right.
$$

Indeed if $(u, v)$ satisfies (1) for some $c>0$, there is a traveling wave to (FN).

Following the ansatz proposed by Heinze, we study the homoclinic solutions of

$$
\left\{\begin{align*}
d c^{2} u_{x x}+d c^{2} u_{x}+f(u)-v & =0  \tag{1}\\
c^{2} v_{x x}+c^{2} v_{x}+u-\gamma v & =0
\end{align*}\right.
$$

Indeed if $(u, v)$ satisfies (1) for some $c>0$, there is a traveling wave to (FN). In particular, if $(u, v) \rightarrow(0,0)$ as $|x| \rightarrow \infty$ then this is a traveling pulse solution.

Let $L_{e x}^{2}=\left\{u: \int_{-\infty}^{\infty} e^{x}(u(x))^{2} d x<\infty\right\}$ be a Hilbert space equipped with a weighted norm $\|u\|_{L_{e x}^{2}} \equiv \sqrt{\int_{-\infty}^{\infty} e^{x} u^{2} d x}$.
The Green function $G$ of the differential operator $\left(\gamma-c^{2} \frac{d^{2}}{d x^{2}}-c^{2} \frac{d}{d x}\right)$ is a positive function given by

$$
G(x, s)= \begin{cases}\frac{1}{c \sqrt{c^{2}+4 \gamma}} e^{-r_{2} s} e^{r_{2} x}, & \text { if } x<s \\ \frac{1}{c \sqrt{c^{2}+4 \gamma}} e^{-r_{1} s} e^{r_{1} x}, & \text { if } x>s\end{cases}
$$

Here the solutions of the characteristic equation $c^{2} r^{2}+c^{2} r-\gamma=0$ are $\frac{1}{2 c}\left(-c \pm \sqrt{c^{2}+4 \gamma}\right)$, denoted by $r_{1}$ and $r_{2}$ with $r_{1}<-1<0<r_{2}$.

$$
\mathcal{L}_{c}: L_{e x}^{2} \rightarrow L_{e x}^{2}, \text { since } 1+2 r_{1}<0 \text { and } 1+2 r_{2}>0 .
$$

$\mathcal{L}_{c}: L_{e x}^{2} \rightarrow L_{e x}^{2}$, since $1+2 r_{1}<0$ and $1+2 r_{2}>0$.
Set $g(x, s)=e^{-s} G(x, s)$. With $r_{1}+r_{2}=-1$, it is easily seen that $g(x, s)=g(s, x)$.
$\mathcal{L}_{c}: L_{e x}^{2} \rightarrow L_{e x}^{2}$, since $1+2 r_{1}<0$ and $1+2 r_{2}>0$.
Set $g(x, s)=e^{-s} G(x, s)$. With $r_{1}+r_{2}=-1$, it is easily seen that $g(x, s)=g(s, x)$. For $u_{1}, u_{2} \in L_{e x}^{2}$,

$$
\begin{aligned}
\int_{\mathbf{R}} e^{x} u_{1}(x) \mathcal{L}_{c} u_{2}(x) d x & =\int_{\mathbf{R}} \int_{\mathbf{R}} e^{x} e^{s} g(x, s) u_{1}(x) u_{2}(s) d s d x \\
& =\int_{\mathbf{R}} \int_{\mathbf{R}} e^{x} e^{s} g(s, x) u_{1}(x) u_{2}(s) d x d s \\
& =\int_{\mathbf{R}} e^{s} u_{2}(s) \mathcal{L}_{c} u_{1}(s) d s
\end{aligned}
$$

that is, $\mathcal{L}_{c}: L_{e x}^{2} \rightarrow L_{e x}^{2}$ is self-adjoint.
$\mathcal{L}_{c}: L_{e x}^{2} \rightarrow L_{e x}^{2}$, since $1+2 r_{1}<0$ and $1+2 r_{2}>0$.
Set $g(x, s)=e^{-s} G(x, s)$. With $r_{1}+r_{2}=-1$, it is easily seen that $g(x, s)=g(s, x)$. For $u_{1}, u_{2} \in L_{e x}^{2}$,

$$
\begin{aligned}
\int_{\mathbf{R}} e^{x} u_{1}(x) \mathcal{L}_{c} u_{2}(x) d x & =\int_{\mathbf{R}} \int_{\mathbf{R}} e^{x} e^{s} g(x, s) u_{1}(x) u_{2}(s) d s d x \\
& =\int_{\mathbf{R}} \int_{\mathbf{R}} e^{x} e^{s} g(s, x) u_{1}(x) u_{2}(s) d x d s \\
& =\int_{\mathbf{R}} e^{s} u_{2}(s) \mathcal{L}_{c} u_{1}(s) d s
\end{aligned}
$$

that is, $\mathcal{L}_{c}: L_{e x}^{2} \rightarrow L_{e x}^{2}$ is self-adjoint.
$\mathcal{L}_{c} u(x)=\frac{e^{r_{1} x}}{c \sqrt{c^{2}+4 \gamma}} \int_{-\infty}^{x} e^{-r_{1} s} u(s) d s+\frac{e^{r_{2} x}}{c \sqrt{c^{2}+4 \gamma}} \int_{x}^{\infty} e^{-r_{2} s} u(s) d s$

Define $F(\xi)=-\int_{0}^{\xi} f(\eta) d \eta=\xi^{4} / 4-(1+\beta) \xi^{3} / 3+\beta \xi^{2} / 2$.
Let $H_{e x}^{1}$ be a Hilbert space equipped with the norm

$$
\|w\|_{H_{e x}^{1}}=\sqrt{\int_{\mathbf{R}} e^{x} w_{x}^{2} d x+\int_{\mathbf{R}} e^{x} w^{2} d x}
$$

Consider a functional $J_{c}: H_{e x}^{1} \rightarrow \mathbf{R}$ defined by

$$
J_{c}(w) \equiv \int_{\mathbf{R}} e^{x}\left\{\frac{d c^{2}}{2} w_{x}^{2}+\frac{1}{2} w \mathcal{L}_{c} w+F(w)\right\} d x
$$

Define $F(\xi)=-\int_{0}^{\xi} f(\eta) d \eta=\xi^{4} / 4-(1+\beta) \xi^{3} / 3+\beta \xi^{2} / 2$.
Let $H_{e x}^{1}$ be a Hilbert space equipped with the norm

$$
\|w\|_{H_{e x}^{1}}=\sqrt{\int_{\mathbf{R}} e^{x} w_{x}^{2} d x+\int_{\mathbf{R}} e^{x} w^{2} d x}
$$

Consider a functional $J_{c}: H_{e x}^{1} \rightarrow \mathbf{R}$ defined by

$$
J_{c}(w) \equiv \int_{\mathbf{R}} e^{x}\left\{\frac{d c^{2}}{2} w_{x}^{2}+\frac{1}{2} w \mathcal{L}_{c} w+F(w)\right\} d x
$$

- If $a \in \mathbf{R}$ and $w \in L_{e x}^{2}$ then $\mathcal{L}_{c}(w(\cdot-a))=\left(\mathcal{L}_{c} w\right)(\cdot-a)$.

Define $F(\xi)=-\int_{0}^{\xi} f(\eta) d \eta=\xi^{4} / 4-(1+\beta) \xi^{3} / 3+\beta \xi^{2} / 2$.
Let $H_{e x}^{1}$ be a Hilbert space equipped with the norm

$$
\|w\|_{H_{e x}^{1}}=\sqrt{\int_{\mathbf{R}} e^{x} w_{x}^{2} d x+\int_{\mathbf{R}} e^{x} w^{2} d x}
$$

Consider a functional $J_{c}: H_{e x}^{1} \rightarrow \mathbf{R}$ defined by

$$
J_{c}(w) \equiv \int_{\mathbf{R}} e^{x}\left\{\frac{d c^{2}}{2} w_{x}^{2}+\frac{1}{2} w \mathcal{L}_{c} w+F(w)\right\} d x
$$

- If $a \in \mathbf{R}$ and $w \in L_{e x}^{2}$ then $\mathcal{L}_{c}(w(\cdot-a))=\left(\mathcal{L}_{c} w\right)(\cdot-a)$.
- For any $a \in \mathbf{R}$ and $w \in H_{e x}^{1}, J_{c}(w(\cdot-a))=e^{a} J_{c}(w)$.

$$
\text { If } w \in H_{e x}^{1}(\mathbf{R}) \text { then }\left\{\begin{aligned}
\frac{1}{4} \int_{\mathbf{R}} e^{x} w^{2} d x & \leq \int_{\mathbf{R}} e^{x} w_{x}^{2} d x \\
e^{x} w^{2}(x) & \leq \int_{x}^{\infty} e^{y} w_{y}^{2} d y
\end{aligned}\right.
$$

$$
\text { If } w \in H_{e x}^{1}(\mathbf{R}) \text { then }\left\{\begin{aligned}
\frac{1}{4} \int_{\mathbf{R}} e^{x} w^{2} d x & \leq \int_{\mathbf{R}} e^{x} w_{x}^{2} d x \\
e^{x} w^{2}(x) & \leq \int_{x}^{\infty} e^{y} w_{y}^{2} d y
\end{aligned}\right.
$$

- $\mathcal{L}_{c}\left(L_{e x}^{2}\right) \subset H_{e x}^{1}$. In fact

$$
\left\|\mathcal{L}_{c} u\right\|_{H_{e x}^{1}} \leq \frac{2 \sqrt{5}}{c^{2}}\|u\|_{L_{e x}^{2}}
$$

$$
\text { If } w \in H_{e x}^{1}(\mathbf{R}) \text { then }\left\{\begin{aligned}
\frac{1}{4} \int_{\mathbf{R}} e^{x} w^{2} d x & \leq \int_{\mathbf{R}} e^{x} w_{x}^{2} d x \\
e^{x} w^{2}(x) & \leq \int_{x}^{\infty} e^{y} w_{y}^{2} d y
\end{aligned}\right.
$$

- $\mathcal{L}_{c}\left(L_{e x}^{2}\right) \subset H_{e x}^{1}$. In fact

$$
\left\|\mathcal{L}_{c} u\right\|_{H_{e x}^{1}} \leq \frac{2 \sqrt{5}}{c^{2}}\|u\|_{L_{e x}^{2}} .
$$

- For any $w \in H_{e x}^{1}$,

$$
\int_{\mathbf{R}} e^{x} w_{x}^{2} d x \leq\|w\|_{H_{e x}^{1}}^{2} \leq 5 \int_{\mathbf{R}} e^{c x} w_{x}^{2} d x
$$

in other words, $\left\|w_{x}\right\|_{L_{e x}^{2}}$ is an equivalent norm for $H_{e x}^{1}$.

$$
\left\{\begin{array}{l}
\|v\|_{L_{e x}^{2}} \leq \frac{4}{c^{2}}\|u\|_{L_{e x}^{2}}, \\
\left\|v^{\prime}\right\|_{L_{e x}^{2}} \leq \frac{2}{c^{2}}\|u\|_{L_{x x}^{2}}, \\
0 \leq \int_{\mathbf{R}} e^{x}\left\{c^{2}\left(\mathcal{L}_{c} u\right)^{\prime 2}+\gamma\left(\mathcal{L}_{c} u\right)^{2}\right\} d x=\int_{\mathbf{R}} e^{x} u \mathcal{L}_{c} u d x .
\end{array}\right.
$$

Let

$$
\mathcal{A} \equiv\left\{w \in H_{e x}^{1}: \int_{\mathbf{R}} e^{x} w_{x}^{2} d x=2 .\right\}
$$

To seek traveling pulse solutions, we begin with studying the functional $J_{c}: \mathcal{A} \rightarrow \mathbf{R}$. Set $\mathcal{J}(c) \equiv \inf _{w \in \mathcal{A}} J_{c}(w)$.

Lemma. There exists a $\bar{c}=\bar{c}(d, \beta)>0$ such that if $c \geq \bar{c}$ then $\mathcal{J}(c)>0$.
Proof. For $w \in \mathcal{A}$, since the nonlocal term is non-negative,

$$
\begin{aligned}
J_{c}(w) & \geq \frac{d c^{2}}{2} \int_{\mathbf{R}} e^{x} w_{x}^{2} d x+\int_{\mathbf{R}} e^{x} F(w) d x \\
& \geq d c^{2}-M_{2} \int_{\mathbf{R}} e^{x} w^{2} d x \\
& \geq d c^{2}-8 M_{2} \\
& \geq 8 M_{2}
\end{aligned}
$$

Clearly $\mathcal{J}(c)>0$ if $\bar{c}=4 \sqrt{M_{2} / d}$.

The next step is to show that $\mathcal{J}(c)<0$ when $c$ is small. Let $y=x / c$ and $\tilde{\mathcal{L}}_{c}=\left(\gamma-\frac{d^{2}}{d y^{2}}-c \frac{d}{d y}\right)^{-1}$. For $u \in \mathcal{A}$, if $\tilde{u}(y) \equiv u(x)$, it is easy to check that $\tilde{\mathcal{L}}_{c} \tilde{u}(y)=\mathcal{L}_{c} u(x)$, so is $\tilde{v}(y)=\tilde{\mathcal{L}}_{c} \tilde{u}(y)$ Clearly $u \in H_{e x}^{1}$ if and only if $\tilde{u} \in H_{c}^{1}(\mathbf{R})=\left\{w: \int_{\mathbf{R}} e^{c y} w_{y}^{2} d y<\infty\right\}$. Similarly $\mathcal{L}_{c} u \in H_{e x}^{1}$ if and only if $\tilde{\mathcal{L}}_{c} \tilde{u} \in H_{c}^{1}$. A direct calculation gives

$$
\begin{aligned}
J_{c}(u) & =\int_{\mathbf{R}} e^{x}\left\{\frac{d c^{2}}{2}\left(u^{\prime}(x)\right)^{2}+F(u(x))+\frac{1}{2} u(x) \mathcal{L}_{c} u(x)\right\} d x \\
& =c \int_{\mathbf{R}} e^{c y}\left\{\frac{d}{2}\left(\tilde{u}^{\prime}(y)\right)^{2}+F(\tilde{u}(y))+\frac{1}{2} \tilde{u}(y) \tilde{\mathcal{L}}_{c} \tilde{u}(y)\right\} d y
\end{aligned}
$$

Consider a piecewise linear function defined by

$$
q_{0}(y) \equiv \begin{cases}1, & \text { if } 0 \leq y \leq a \\ \frac{(b-y)}{b-a}, & \text { if } a \leq y \leq b \\ 0, & \text { if } y \geq b\end{cases}
$$

With an even extension, $q_{0}$ has a compact support on the real line. It has been shown that there is a $k_{1}>0$ such that

$$
\int_{\mathbf{R}}\left\{\frac{d}{2} q_{0}^{\prime 2}+F\left(q_{0}\right)+\frac{1}{2} q_{0} \tilde{\mathcal{L}}_{0} q_{0}\right\} d y<0
$$

if $d \leq k_{1} \gamma$.

Lemma. Let $c \geq 0$ and $\left\{c_{n}\right\}_{n=1}^{\infty} \subset[0, \infty)$ such that $\left|c_{n}-c\right| \leq \min \{1, \gamma\}$ and $c_{n} \rightarrow c$ if $n \rightarrow \infty$. Suppose that there exists a $\delta>0$ such that $(c-\delta)^{+} \leq c_{n} \leq c+\delta$. If $w \in H_{s}^{1}$ for all $(c-\delta)^{+} \leq s \leq c+\delta$, then

$$
\left\|\tilde{\mathcal{L}}_{c_{n}} w-\tilde{\mathcal{L}}_{c} w\right\|_{H_{c}^{1}} \leq \frac{2(1+\gamma)}{\gamma^{2}}\left|c_{n}-c\right|\|w\|_{L_{c}^{2}} .
$$

Lemma. Let $c \geq 0$ and $\left\{c_{n}\right\}_{n=1}^{\infty} \subset[0, \infty)$ such that $\left|c_{n}-c\right| \leq \min \{1, \gamma\}$ and $c_{n} \rightarrow c$ if $n \rightarrow \infty$. Suppose that there exists a $\delta>0$ such that $(c-\delta)^{+} \leq c_{n} \leq c+\delta$. If $w \in H_{s}^{1}$ for all $(c-\delta)^{+} \leq s \leq c+\delta$, then

$$
\left\|\tilde{\mathcal{L}}_{c_{n}} w-\tilde{\mathcal{L}}_{c} w\right\|_{H_{c}^{1}} \leq \frac{2(1+\gamma)}{\gamma^{2}}\left|c_{n}-c\right|\|w\|_{L_{c}^{2}}
$$

Lemma. If $d \leq d_{0}$ then $\mathcal{J}(c)<0$ for $c \in(0, \underline{c})$.

Lemma. Let $c \geq 0$ and $\left\{c_{n}\right\}_{n=1}^{\infty} \subset[0, \infty)$ such that $\left|c_{n}-c\right| \leq \min \{1, \gamma\}$ and $c_{n} \rightarrow c$ if $n \rightarrow \infty$. Suppose that there exists a $\delta>0$ such that $(c-\delta)^{+} \leq c_{n} \leq c+\delta$. If $w \in H_{s}^{1}$ for all $(c-\delta)^{+} \leq s \leq c+\delta$, then

$$
\left\|\tilde{\mathcal{L}}_{c_{n}} w-\tilde{\mathcal{L}}_{c} w\right\|_{H_{c}^{1}} \leq \frac{2(1+\gamma)}{\gamma^{2}}\left|c_{n}-c\right|\|w\|_{L_{c}^{2}}
$$

Lemma. If $d \leq d_{0}$ then $\mathcal{J}(c)<0$ for $c \in(0, \underline{c})$.
Lemma. Let $c>0$ and $\left\{c_{n}\right\}_{n=1}^{\infty} \subset(c / \sqrt{2}, c \sqrt{3} / \sqrt{2})$ such that $c_{n} \rightarrow c$ as $n \rightarrow \infty$. Then there exists a $M_{4}>0$ such that

$$
\left\|\mathcal{L}_{c_{n}} w-\mathcal{L}_{c} w\right\|_{H_{e x}^{1}} \leq M_{4}\left|c_{n}^{2}-c^{2}\right|\|w\|_{L_{e x}^{2}}
$$

for all $w \in H_{e x}^{1}$. Here $M_{4}$ is continuous in $\gamma$ and $c$, and bounded if $c$ is bounded away from zero.

Lemma. The function $\mathcal{J}:[\underline{c}, \bar{c}] \rightarrow \mathbf{R}$ is continuous.

Lemma. The function $\mathcal{J}:[\underline{c}, \bar{c}] \rightarrow \mathbf{R}$ is continuous.
Lemma. There exists a $c_{0} \in[\underline{c}, \bar{c}]$ such that $\mathcal{J}\left(c_{0}\right)=0$.

Lemma. The function $\mathcal{J}:[\underline{c}, \bar{c}] \rightarrow \mathbf{R}$ is continuous.
Lemma. There exists a $c_{0} \in[\underline{c}, \bar{c}]$ such that $\mathcal{J}\left(c_{0}\right)=0$.
Lemma. There is a $u_{0} \in \mathcal{A}$ such that $J_{c_{0}}\left(u_{0}\right)=0$.

Lemma. The function $\mathcal{J}:[\underline{c}, \bar{c}] \rightarrow \mathbf{R}$ is continuous.
Lemma. There exists a $c_{0} \in[\underline{c}, \bar{c}]$ such that $\mathcal{J}\left(c_{0}\right)=0$.
Lemma. There is a $u_{0} \in \mathcal{A}$ such that $J_{c_{0}}\left(u_{0}\right)=0$.
A Poincare type inequality shows that this solution decays to $(0,0)$ at $+\infty$. However, it is more delicate and usually requires more efforts to investigate the asymptotic behavior of a traveling wave near $-\infty$ when such a solution is obtained from a weighted function space like $H_{e x}^{1}$ via a variational approach In some situations, for instance in case of scalar reaction-diffusion equations, the maximum principle provides a help to complete this task.

We minimize $J_{c}$ over the set of admissible functions in the class $-/+/-$. Roughly speaking, this is a topological constraint which requires that the functions in the admissible set change sign at most twice.


Let $\beta<\beta_{1}<1<\beta_{2}$ satisfy $F\left(\beta_{1}\right)=F\left(\beta_{2}\right)=0$. A continuous function $w$ is in the class $-/+/-$, if there exist $-\infty \leq x_{1} \leq x_{2} \leq \infty$ such that $w \leq 0$ on $\left(-\infty, x_{1}\right] \cup\left[x_{2}, \infty\right)$, and $w \geq 0$ on $\left[x_{1}, x_{2}\right]$. The choice of $x_{1}, x_{2}$ is not necessarily unique. For instance, if $x_{1}=-\infty$ and $x_{2}=\infty$, then $w \geq 0$ on the real line. In case $x_{1}=x_{2}=\infty$, then $w \leq 0$ on the real line. Both examples are included in the class $-/+/-$.


The qualitative properties of the global minimizer $u_{0}$ can be accessed by arguing indirectly and performing step by step either local or global surgeries on $u_{0}$ to generate a new function $u_{\text {new }} \in \mathcal{A}$ with $J_{c}\left(u_{\text {new }}\right)<J_{c}\left(u_{0}\right)$.

The qualitative properties of the global minimizer $u_{0}$ can be accessed by arguing indirectly and performing step by step either local or global surgeries on $u_{0}$ to generate a new function $u_{\text {new }} \in \mathcal{A}$ with $J_{c}\left(u_{\text {new }}\right)<J_{c}\left(u_{0}\right)$.

Lemma. Suppose that $u_{n e w} \in H_{e x}^{1}$, a function after making some changes on $u_{0}$. Then the change in the nonlocal term is

$$
\int_{\mathbf{R}} e^{x}\left(u_{n e w} \mathcal{L}_{c} u_{n e w}-u_{0} \mathcal{L}_{c} u_{0}\right)=\int_{\mathbf{R}} e^{x}\left(u_{n e w}-u_{0}\right) \mathcal{L}_{c}\left(u_{n e w}+u_{0}\right) .
$$

Proof. It is a direct consequence of the fact that $\mathcal{L}_{c}$ is self adjoint with respect to the $L_{e x}^{2}$ inner product.

Lemma. Suppose that $u_{n e w} \in H_{e x}^{1}$, a function after making some changes on $u_{0}$. Then the change in the nonlocal term is
$\int_{\mathbf{R}} e^{x}\left(u_{n e w} \mathcal{L}_{c} u_{n e w}-u_{0} \mathcal{L}_{c} u_{0}\right)=\int_{\mathbf{R}} e^{x}\left(u_{n e w}-u_{0}\right) \mathcal{L}_{c}\left(u_{n e w}+u_{0}\right)$.
Proof. It is a direct consequence of the fact that $\mathcal{L}_{c}$ is self adjoint with respect to the $L_{e x}^{2}$ inner product.

Remark. If the support of $u_{\text {new }}-u$ lies inside a finite interval $[a, b]$, then the change in the nonlocal term can be calculated within the same interval $[a, b]$. When $u_{\text {new }}-u$ is small, $\mathcal{L}_{c} u_{\text {new }}$ is close to $\mathcal{L}_{c} u$ on $[a, b]$, even though the decay behavior and the sign of $\mathcal{L}_{c} u_{\text {new }}$ near infinity can differ from those of $\mathcal{L}_{c} u$.

Let $u_{0}$ be a minimizer. The next lemma enables us to eliminate the possibility that a sharp corner appears on the graph of $u_{0}$.

Corner Lemma If $x_{0}$ and $\ell>0$ are numbers such that $u_{0}\left(x_{0}\right)=0$ and $u_{0} \in C^{1}\left[x_{0}-\ell, x_{0}\right] \cap C^{1}\left[x_{0}, x_{0}+\ell\right]$, then $\lim _{x \rightarrow x_{0}^{-}} u_{0}^{\prime}(x)=\lim _{x_{0} \rightarrow x_{0}^{+}} u_{0}^{\prime}(x)$.

Let $u_{0}$ be a minimizer. The next lemma enables us to eliminate the possibility that a sharp corner appears on the graph of $u_{0}$.

Corner Lemma If $x_{0}$ and $\ell>0$ are numbers such that $u_{0}\left(x_{0}\right)=0$ and $u_{0} \in C^{1}\left[x_{0}-\ell, x_{0}\right] \cap C^{1}\left[x_{0}, x_{0}+\ell\right]$, then $\lim _{x \rightarrow x_{0}^{-}} u_{0}^{\prime}(x)=\lim _{x_{0} \rightarrow x_{0}^{+}} u_{0}^{\prime}(x)$.

The inherited technical difficulty associated with the topological class $\mathcal{A}$ is partly alleviated.

The idea for the proof of corner lemma.
We argue indirectly. Suppose $u_{0}\left(x_{0}\right)=0, \lim _{x \rightarrow x_{0}^{-}} u_{0}^{\prime}(x)=a_{1}$ and $\lim _{x_{0} \rightarrow x_{0}^{+}} u_{0}^{\prime}(x)=a_{2}$ with $a_{1} \neq a_{2}$. If $u_{0}$ were straight lines on either side of $x_{0}$, then

$$
u_{0}(x)= \begin{cases}a_{1}\left(x-x_{0}\right), & \text { if } x_{0}-\ell \leq x \leq x_{0} \\ a_{2}\left(x-x_{0}\right), & \text { if } x_{0} \leq x \leq x_{0}+\ell\end{cases}
$$

If the points $\left(x_{0}-\ell, u_{0}\left(x_{0}-\ell\right)\right)$ and $\left(x_{0}+\ell, u_{0}\left(x_{0}+\ell\right)\right)$ on the graph of $u_{0}$ is joined by a straight line, the slope of this line is $\left(a_{1}+a_{2}\right) / 2$. This simple example gives a basic idea in the proof.

For a general $C^{1}$ function $u_{0}$, if $\ell_{1} \ll \ell$, then $u_{0}^{\prime}(x)=a_{1}+o(1)$ for $x_{0}-\ell_{1} \leq x \leq x_{0} ; u_{0}^{\prime}(x)=a_{2}+o(1)$ for $x_{0} \leq x \leq x_{0}+\ell_{1}$; and the straight line $y=L_{1}(x)$ joining $\left(x_{0}-\ell_{1}, u_{0}\left(x_{0}-\ell_{1}\right)\right)$ and $\left(x_{0}+\ell_{1}, u_{0}\left(x_{0}+\ell_{1}\right)\right)$ has a slope of $\left(a_{1}+a_{2}\right) / 2+o(1)$. Set

$$
u_{\text {new }}(x)= \begin{cases}u_{0}(x), & \text { if } x \leq x_{0}-\ell_{1} \\ L_{1}(x), & \text { if } x_{0}-\ell_{1} \leq x \leq x_{0}+\ell_{1} \\ u_{0}(x), & \text { if } x \geq x_{0}+\ell_{1}\end{cases}
$$

## Then

$$
\begin{aligned}
& \frac{d}{2} \int_{x_{0}-\ell_{1}}^{x_{0}+\ell_{1}}\left\{\left(u_{\text {new }}\right)_{x}^{2}-\left(u_{0}\right)_{x}^{2}\right\} e^{x} d x \\
= & \frac{d}{2}\left\{\left(\frac{\left(a_{1}+a_{2}\right)}{2}+o(1)\right)^{2} 2 \ell_{1}-\left(a_{1}+o(1)\right)^{2} \ell_{1}-\left(a_{2}+o(1)\right)^{2} \ell_{1}\right\} \\
= & -\frac{d \ell_{1}}{4}\left(\left(a_{1}-a_{2}\right)^{2}+o(1)\right)<0 .
\end{aligned}
$$

Employing the mean value theorem yields
$\int_{x_{0}-\ell_{1}}^{x_{0}+\ell_{1}}\left\{F\left(u_{\text {new }}\right)-F\left(u_{0}\right)\right\} e^{x} d x=-\int_{x_{0}-\ell_{1}}^{x_{0}+\ell_{1}} f(\tilde{u})\left(u_{\text {new }}-u_{0}\right) e^{x} d x$
for some $\tilde{u}$ lying in between $u_{0}$ and $u_{\text {new }}$. Since
$u_{\text {new }}-u_{0}=O\left(\ell_{1}\right)$,

$$
\left|\int_{x_{0}-\ell_{1}}^{x_{0}+\ell_{1}}\left\{F\left(u_{n e w}\right)-F\left(u_{0}\right)\right\} e^{x} d x\right| \leq \ell_{1} O\left(\ell_{1}\right)
$$

which is negligible compared with the change in the gradient term of $J$.

Now turn to the nonlocal term of $J$. Since both $\left|\mathcal{L}_{c} u_{0}\right|$ and $\left|\mathcal{L}_{c} u_{\text {new }}\right|$ are bounded and $\left|u_{\text {new }}-u_{0}\right|=O\left(\ell_{1}\right)$,

$$
\left|\frac{1}{2} \int_{x_{0}-\ell_{1}}^{x_{0}+\ell_{1}}\left\{u_{\text {new }} \mathcal{L}_{c} u_{n e w}-u_{0} \mathcal{L}_{c} u_{0}\right\} e^{x} d x\right| \leq \ell_{1} O\left(\ell_{1}\right)
$$

which is also negligible compared with the change in the gradient term.
Therefore $J\left(u_{\text {new }}\right)<J\left(u_{0}\right)$ with $u_{\text {new }} \in \mathcal{A}$. This contradicts $u_{0}$ being a minimizer in $\mathcal{A}$.

Lemma. Let $\psi=u_{0}+\alpha v_{0}$. Then $\psi$ is positive everywhere,

Lemma. Let $\psi=u_{0}+\alpha v_{0}$. Then $\psi$ is positive everywhere, so is $v$.

Lemma. Let $\psi=u_{0}+\alpha v_{0}$. Then $\psi$ is positive everywhere, so is $v$.

Theorem. Given $\beta \in(0,1 / 2)$ and $\gamma<4 /(1-\beta)^{2}$, there is a $\hat{d}=\hat{d}(\gamma)$ such that if $d \leq \hat{d}$ then for some $c>0$, (FN) possesses a traveling pulse solution $\left(u_{0}, v_{0}\right)$. Moreover $u_{0}, v_{0} \in C^{\infty}(\mathbf{R})$ and are exponentially decaying to 0 as $|x| \rightarrow \infty$.

Suppose that $u_{0} \geq 0$ and oscillates infinite number of times near
$-\infty$. Then $u_{0} \geq 0$ on $\left(-\infty, z_{3}\right]$. For $x_{1}<x_{2}<z_{3}$,

$$
\begin{aligned}
w_{1}\left(x_{1}, x_{2}\right) & \equiv d c_{0}^{2}\left(u_{0}^{\prime}\left(x_{2}\right)-u_{0}^{\prime}\left(x_{1}\right)+u_{0}\left(x_{2}\right)-u_{0}\left(x_{1}\right)\right) \\
& =\int_{x_{1}}^{x_{2}} v_{0} d x-\int_{x_{1}}^{x_{2}} f\left(u_{0}\right) d x
\end{aligned}
$$

Then $w_{1}$ is uniformly bounded for any choice of $x_{1}$ and $x_{2}$.

$$
\begin{gathered}
\gamma \int_{x_{1}}^{x_{2}} v_{0} d x-\int_{x_{1}}^{x_{2}} u_{0} d x=w_{2}\left(x_{1}, x_{2}\right) \\
w_{1}-\frac{w_{2}}{\gamma}=\int_{x_{1}}^{x_{2}}\left\{\frac{u_{0}}{\gamma}-f\left(u_{0}\right)\right\} d x \geq m \int_{x_{1}}^{x_{2}} u_{0} d x
\end{gathered}
$$

for some positive constant $m$, since the graph $v=f(u)$ lies underneath the line $v=u / \gamma$ when $u \geq 0$. Thus

$$
0<\int_{-\infty}^{z_{3}} u_{0} d x \leq M / m
$$

## Remark

Suppose there exist $a_{1}<b_{1} \leq a_{2}<b_{2} \leq a_{3}<b_{3} \ldots$ in the interval $\left[x_{0}-\ell, x_{0}\right]$ such that

$$
\begin{cases}u_{0}<\beta_{2} & \text { on intervals }\left(a_{i}, b_{i}\right), i=1,2, \ldots, \\ u_{0}=\beta_{2} & \text { on }\left[x_{0}-\ell, x_{0}\right] \backslash \cup_{i=1}^{\infty}\left(a_{i}, b_{i}\right)\end{cases}
$$

with both $a_{i} \rightarrow x_{0}^{-}$and $b_{i} \rightarrow x_{0}^{-}$, then $u_{0} \in C^{1}\left[x_{0}-\ell, x_{0}\right)$ by
Corner Lemma.

