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Pattern formation became an active research field in recent

years. Reaction-diffusion systems serve as relevant models for

studying complex patterns in several fields of sciences.
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Pattern formation became an active research field in recent
years. Reaction-diffusion systems serve as relevant models for

studying complex patterns in several fields of sciences.

A. M. Turing, Phil. Trans. R. Soc. Lond. 1952

The chemical basis of morphogenesis.

A fascinating idea proposed by Turing demonstrated that in a
homogeneous medium, spatially heterogeneous distributed
patterns can be produced from chemical reaction of two

substances with different diffusivities.



o Besides these regular patterns found in a neighborhood of
bifurcation induced by Turing’s instability, localized
structures such as fronts and pulses are also observed in

experiment and numerical simulation.



o Besides these regular patterns found in a neighborhood of
bifurcation induced by Turing’s instability, localized
structures such as fronts and pulses are also observed in

experiment and numerical simulation.

o Pulses are self-organized patterns with profiles that are in
close proximity to a trivial background state except for one
or several localized spatial regions where changes are

substantial.

o Localized structures represent states which are far away

from the homogeneous equilibrium.



Particle-like structures are commonly observed in physical,
chemical and biological systems.
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Depending on the system parameters and initial conditions,

localized dissipative structures may stay at rest or propagate

with a dynamically stabilized velocity. (Localized waves)
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A well-known reaction-diffusion model for studying diffusion
-induced instability and emergence of patterns is the system of

FitzHugh-Nagumo equations:

ur — Au==(f(u) —v u : activator
 — A= 5w~ v) -
v — Av =u—yv v : inhibitor

>0 f : cubic polynomial

Suppose (u(xz — ct),v(z — ct)) satisfies (FN), then when viewed
by someone moving with the speed ¢, this solution keeps the
same profile. Such a solution is referred to as a traveling wave,

while it is a stationary pattern or standing wave if ¢ = 0.



We may consider the case ¢ > 0 only; for otherwise, reverse the

direction of wave motion will do. Recall that

U = Ugg + f(u) —v

v = e(u — yv)
is a simplified model for the Hodgkin-Huxley system to describe
the electrical impulses in the axon of the squid. Here
(u,v) = (0,0) is the rest state, and the nerve impulse is
generated by a finite excitation; the homogeneous ground state
relaxes the characteristic shape of the pulse. For ¢ << 1, the
existence of a traveling pulse has been treated as a singular
perturbation problem in which the pulse is constructed by

stitching together solutions of certain reduced systems.



For the nullclines in the (u,v) plane, if v < 4/(1 — 3)? the
straight line v = u/~y intersects the curve v = f(u) at one point
(0,0) only.
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For the nullclines in the (u,v) plane, if v < 4/(1 — 3)? the

straight line v = u/ intersects the curve v = f(u) at one point

(0,0) only.

Theorem. Let € (0,1/2) be given.

(i) There exist 4 > 0 and d = d(v) > 0 such that if v < 4 and

d < d, then there is a standing pulse solution (u,v) of (FN).

(ii) Both w and v are even functions on (—oo, 00) and satisfy
(u,v) — (0,0) as = — oc.

(iii) w changes signs exactly once in (0, 00) while v > 0 and

v < 0 on (0,00).



The profile of a standing pulse
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The profile of a traveling pulse

«0O>» «FHr «=>»

<

it
-

DA



There have been many interesting works on the traveling wave
solutions for scalar reaction-diffusion equation
up = Au+ f(u).
A planar traveling wave satisfies an ordinary differential
equation; the existence question has been studied by various
methods. Lucia, Muratov and Novaga considered the functional
1
L[] = / (302 + F(u)e*da,

where F(u) = — [ f(s)ds. Since I.(w(- — a)) = e"I.(w), they
seek a minimizer u. of I, under the constraint fR uﬁe‘“”'dx = 1.
When I [u.] <0, letting ¢ = ¢/1 — I.[uc] and 4(z) = u.(éx/c),

they showed that @ is a travelling wave with speed ¢.



Heinze considered a different type of ansatz u(c(§ — ct),y) in
the change of variables. Then a function satisfying

A (Ugge + uz) + Ayu+ f(u) =0
represents a traveling wave solution.
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Heinze considered a different type of ansatz u(c(§ —ct),y) in
the change of variables. Then a function satisfying

A (Ugg + uz) + Ayu + f(u) =0
represents a traveling wave solution.
Let H denote the Hilbert space equipped with the norm
Jullg = [o(u2 + |Vyul* + u?)e*dzdy, where Q is a cylinder.
Heinze viewed a traveling wave solution @ as a minimizer of
fQ %uiexdxdy subject to the constraint
{ueH: [[3|Vyul*+ F(u)le*dzdy = —1}. A stimulating
result of this approach is that the Lagrange multiplier is

nothing but C%, where |c| gives the wave speed.



Following the ansatz proposed by Heinze, we study the
homoclinic solutions of

dcPugy + dPu, + f(u) —v =0,
(1)

c%m + czvm +u—yv =0.

Indeed if (u,v) satisfies (1) for some ¢ > 0, there is a traveling

wave to (FN).



Following the ansatz proposed by Heinze, we study the
homoclinic solutions of

dcPugy + dPu, + f(u) —v =0,
(1)

c%m + czvm +u—yv =0.

Indeed if (u,v) satisfies (1) for some ¢ > 0, there is a traveling
wave to (FN). In particular, if (u,v) — (0,0) as |z| — oo then

this is a traveling pulse solution.



Let L2, = {u: [*_e"(u(x))? dz < oo} be a Hilbert space

equipped with a weighted norm [juf| 2 = | /]2, e® u? du.

The Green function G of the differential operator

2 . .. . .
— 2L _ 2.4 g 4 positive function given b
v dx dx b g y

1 —ros ,Tox :
— e ifz <s
c\/c2+4y ’ ’
G(z,s) =
L TS eMT if x> s,

cw/c2—|—4’ye
Here the solutions of the characteristic equation
r? 4 c*r —y =0 are o-(—c + \/c? + 4v), denoted by r1 and ro
with r1 < -1 <0 < 9.



.72 2
Leo: L, — L2,

since 1 +2ry < 0 and 1+ 279 > 0.
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.72 2
Leo: L, — L2,

since 1 +2ry < 0 and 1+ 279 > 0.
Set g(z,s) = e 5G(x,s). With r; +re = —1, it is easily seen
that g(x,s) = g(s, ).
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L.: L%, — L2, since 1 +2r; <0and 1+ 2ry > 0.

exr’
Set g(x,s) = e *G(x,s). With r + 7y = —1, it is easily seen
that g(z,s) = g(s,x). For uy,us € L2,

/Rewul(:v)ﬁcug (x) dz = /R/Rezesg(x,s)ul(:c)ug(s)dsdx
_ /R /R e"e*g(s, 2)ur (z)ua(s) d ds
= /Resug(s)ﬁcul (s) ds;

that is, L. : L2, — L2, is self-adjoint.



L.: L%, — L2, since 1 +2r; <0and 1+ 2ry > 0.

exr’
Set g(x,s) = e *G(x,s). With r + 7y = —1, it is easily seen
that g(z,s) = g(s,x). For uy,us € L2,

/ e*uy(z) Loug (z) de = / / e*e’g(x, s)ui(x)ua(s) dsdx
R RJR
= / / ete’g(s, x)ui(z)ua(s) dx ds
RJ/R
= / e’ua(s)Leuy (s) ds ;
R
that is, L. : L2, — L2, is self-adjoint.

67’1$ T s eTQx o s
Lou(r)=—F—— e "% u(s) ds+————= e "% u(s)ds

e/ + 4y oo /2 + 4y



Define F(§) = — fO n) dn = €4/4 — (14 B)E3/3 4+ BE2)2.
Let HZ, be a Hilbert space equipped With the norm

w1, = \// el’wzdx—i- e”dea:

Consider a functional J. : H., — R defined by

dc? 1
Je(w) = /Rex{;wi + §wﬁcw + F(w)} dx .
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Define F(§) = — fO n) dn = €4/4 — (14 B)E3/3 4+ BE2)2.
Let HZ, be a Hilbert space equipped With the norm

w1, = \// el’wzdx—i- e”dea:

Consider a functional J. : H., — R defined by

dc? 1
Je(w) = /Rex{;wi + §wﬁcw + F(w)} dx .

elfaeRandwe Lgm then L.(w(- —a)) = (Low)(- — a).

o Forany a € Rand w € H.,, J.(w(- — a)) = e?J.(w).

exr’



If w € H},(R) then

% fR eZw? dx < fR exwg o ,

e"w?(z) < [° eywz dy |
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If w € H},(R) then

% fR eZw? dx < fR exwg o ,

e"w?(z) < [° eywz dy
° Ec(Lgx) C Helx I fact

2
[ Leull gy, < V5

)
a c_2”u||ng

«O>» «Fr «=>»

<

i
v

Q>



1 gewide < [gewidx,
Ifwe H. (R) then
efw?(x) < [ eYwidy .

o L.(L%)C HL. In fact

25
[ull 2, -

[ Leull 1, < =R

e For any w € H}

exr?
/ e*w? dr < HwH%ﬂx < 5/ e“w? du;
R R

in other words, ||wz||z2 is an equivalent norm for H, L.



lollzz, < Zllullzz,

1Vl < Zllullre,

0 < [ge{(Leu)? +~v(Leuw)?}da = [g e“uLoud .
Let
AE{wGHéx:/eIwgdax:Z}.
R

To seek traveling pulse solutions, we begin with studying the

functional J.: A — R. Set J(c) = infyeca Jo(w).



Lemma. There exists a ¢ = ¢(d, 8) > 0 such that if ¢ > ¢ then
J(c) > 0.

Proof. For w € A, since the nonlocal term is non-negative,

dCQ T, 2 T
Je(w) > — [ efwide+ | e"F(w)dx
2 Jr R

> dCQ—Mg/ e*w? da
R

> dc® — 8My

> 8Ms .

Clearly J(c) > 0 if ¢ = 4y/Ma/d.



The next step is to show that J(¢) < 0 when ¢ is small. Let
y==x/cand L, = (v — % - c%)_l. For u € A, if a(y) = u(z),
it is easy to check that L.u (y) = Lcu(x), so is 9(y) = Lu(y)
Clearly u € H., if and only if

ae HI(R)={w: [} ecng dy < oo}. Similarly L.u € HL, if
and only if £.u € H LA direct calculation gives

62
Jw) = /R ex{d?(u’(x))Q—l—F(u(x))—i—%u(x)/lcu(x)}da:

= o [ MG@WP + Faw) + jily) Law) dy
R



Consider a piecewise linear function defined by

1, if0<y<a,
wy) =9 U8 ifa<y<o,
0, ify >b.

With an even extension, gy has a compact support on the real

line. It has been shown that there is a k1 > 0 such that

/{ ait + F(qo) + QO£OCJ0}dy<0

if d < k1.



Lemma. Let ¢ > 0 and {¢,}72; C [0, 00) such that

|en, — ¢f < min{l,~v} and ¢, — ¢ if n — co. Suppose that there
exists a 0 > 0 such that (c — )" < ¢, <c+46. If we H! for all
(c—d)" <s<c+4, then

A 5 2(1 +~
Voo — Lowll s < % len — ¢ [l 2 -
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Lemma. Let ¢ > 0 and {¢,}72; C [0, 00) such that

len — ¢f < min{l,~v} and ¢, — ¢ if n — co. Suppose that there
exists a § > 0 such that (c — §)* < ¢, <c+46. If we H} for all
(c—d8)t <s<c+4, then

i N 2(1 +
Voo — Fewllay < 2 10— ol ol

Lemma. If d < dj then J(c) < 0 for ¢ € (0,¢).



Lemma. Let ¢ > 0 and {¢,}72; C [0, 00) such that

len — ¢f < min{l,~v} and ¢, — ¢ if n — co. Suppose that there

exists a § > 0 such that (c — §)* < ¢, <c+46. If we H} for all

(c—08)T <s<c+9J, then

2(1+9)
2

Lemma. If d < dj then J(c) < 0 for ¢ € (0,¢).

Lemma. Let ¢ > 0 and {c,}2, C (¢/V/2,¢V/3/+/2) such that

¢p, — ¢ as n — 00. Then there exists a My > 0 such that

1£e,w = Low|l gy < [en = ¢l lwllzz -

1 Ce,w = Lewlgy, < Maley — 2| Jwllzz,
for all w € H},. Here My is continuous in v and ¢, and bounded

if ¢ is bounded away from zero.



Lemma. The function J : [¢,¢] — R is continuous.
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Lemma. The function J : [¢,¢] — R is continuous.

Lemma. There exists a ¢y € [c, ¢] such that J(cp) = 0.
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Lemma. The function J : [¢,¢] — R is continuous.

Lemma. There exists a ¢y € [c, ¢] such that J(cp) = 0.
Lemma. There is a ug € A such that J.,(up) = 0.
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Lemma. The function J : [¢,¢] — R is continuous.

Lemma. There exists a ¢y € [c, ¢] such that J(cp) = 0.
Lemma. There is a ug € A such that J.,(up) = 0.

A Poincare type inequality shows that this solution decays to
(0,0) at +00. However, it is more delicate and usually requires
more efforts to investigate the asymptotic behavior of a
traveling wave near —oo when such a solution is obtained from
a weighted function space like H}, via a variational approach In
some situations, for instance in case of scalar reaction-diffusion
equations, the maximum principle provides a help to complete

this task.



We minimize J. over the set of admissible functions in the class
—/ + /—. Roughly speaking, this is a topological constraint
which requires that the functions in the admissible set change

sign at most twice.

I T2




Let 8 < 1 <1< By satisty F(81) = F(82) = 0. A continuous
function w is in the class —/ + /—, if there exist

—00 < x1 < 3 < 0o such that w < 0 on (—o0, 1] U [z, 00), and
w > 0 on [x1,x3]. The choice of x1, x5 is not necessarily unique.
For instance, if £1 = —0o and x2 = oo, then w > 0 on the real
line. In case x1 = x2 = 00, then w < 0 on the real line. Both

examples are included in the class —/ + /—.



The qualitative properties of the global minimizer ug can be
accessed by arguing indirectly and performing step by step
either local or global surgeries on ug to generate a new function

Unew € A With Je(Upew) < Je(up).



The qualitative properties of the global minimizer ug can be
accessed by arguing indirectly and performing step by step
either local or global surgeries on ug to generate a new function

Unew € A With Je(Upew) < Je(up).



Lemma. Suppose that upe, € H}

e, & function after making

some changes on ug. Then the change in the nonlocal term is

/ ex(unew Lcunew —Ug £cu0) = / ex(unew *UO) Ec(unew +UO) .
R R

Proof. It is a direct consequence of the fact that L. is self

adjoint with respect to the L2, inner product.



Lemma. Suppose that upe, € H}

e, & function after making

some changes on ug. Then the change in the nonlocal term is

/ ex(unew Lcunew —Ug £cu0) = / ex(unew *UO) Ec(unew +UO) .
R R

Proof. It is a direct consequence of the fact that L. is self

adjoint with respect to the L2, inner product.

Remark. If the support of une, — v lies inside a finite interval
[a, b], then the change in the nonlocal term can be calculated
within the same interval [a,b]. When upe,, — w is small, Lotpeq
is close to L.u on [a, b], even though the decay behavior and the

sign of L Uneq near infinity can differ from those of L.u.



Let ug be a minimizer. The next lemma enables us to eliminate

the possibility that a sharp corner appears on the graph of ug.

Corner Lemma If g and ¢ > 0 are numbers such that
ug(rg) = 0 and ug € Ct[zg — £, 20) N Czg, 10 + £], then

limgc_)%_ ug(z) = limzo_mg ug(z).



Let ug be a minimizer. The next lemma enables us to eliminate

the possibility that a sharp corner appears on the graph of ug.

Corner Lemma If g and ¢ > 0 are numbers such that
ug(rg) = 0 and ug € Ct[zg — £, 20) N Czg, 10 + £], then

lim,, - ug(z) = lim

The inherited technical difficulty associated with the topological
class A is partly alleviated.



The idea for the proof of corner lemma.
We argue indirectly. Suppose ug(zo) =0, limhm(T up(z) = ay
and limxo%xg uf(z) = ag with a3 # as. If uy were straight lines
on either side of xg, then
| ai(x—xg), ifzg—L <z < x,

uo() = { as(z — xp), ifxg <z < 3o+~
If the points (zg — £, ug(xo — £)) and (z¢ + £, up(zo + £)) on the
graph of ug is joined by a straight line, the slope of this line is

(a1 + a2)/2. This simple example gives a basic idea in the proof.



For a general C! function wuy, if £1 << ¢, then uf(z) = a1 + o(1)

for zog — 01 <z < x0; uy(z) = az + o(1) for zg < x < zg + £1;

and the straight line y = L1 (z) joining (z¢ — ¢1, up(zo — ¢1)) and

(xo + €1, up(xo + ¢1)) has a slope of (a1 + a2)/2+ o(1). Set
uo(x), ifz<xg—4,

Unew(®) = ¢ Li(x), ifxg—01 <o <wo+ 4,
uo(x), ifxz>x9+40.

Then

d xo+01
d / {(tnew)? — (u0)2} ¢*da

2 0—*41

2
- 3 (W + 0(1)> 201 — (a1 + 0(1))*61 — (a2 + 0(1))*/1}



Employing the mean value theorem yields
zo+41 xo+401

/ {F (tnew) — F(up)} e*dx = — / F (@) (upew —uo) €°dx

zo—4L1 x0—01
for some 4 lying in between ug and Upeq,. Since
Unew — U = O(El)u

zo+41
[ (P (tnew) — Flug)y eda| < 6 0(81),
xro—41

which is negligible compared with the change in the gradient

term of J.



Now turn to the nonlocal term of J. Since both |L.up| and

|Lctinew| are bounded and |upe,, — ug| = O(4y),

1 zo+41
|§ / {Unew LUnew — Uo LCUO} e’dx | </t O(gl) >

0—41
which is also negligible compared with the change in the
gradient term.
Therefore J(unew) < J(up) With tpey € A. This contradicts ug

being a minimizer in A.



Lemma. Let ¥ = ug + avg . Then v is positive everywhere,
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is v.

Lemma. Let ¥ = ug + avg . Then v is positive everywhere, so
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Lemma. Let ¥ = ug + avg . Then v is positive everywhere, so

is v.

Theorem. Given 8 € (0,1/2) and v < 4/(1 — 8)?, there is a
d = d(v) such that if d < d then for some ¢ > 0, (FN) possesses
a traveling pulse solution (ug, vg). Moreover ug, vy € C*°(R)

and are exponentially decaying to 0 as |z| — oo.



Suppose that ug > 0 and oscillates infinite number of times near
—00. Then uy > 0 on (—o0, 23]. For 1 < 23 < 23,

wy(z1,22) = deg(ug(wa) — up(w1) + uo(w2) — uo(a1))

T2 T2
= / vo dx — f(up) dzx ,

1 x1

Then wy is uniformly bounded for any choice of x1 and xs.

T2 T2
’y/ vodx—/ up dr = wa(z1, T2) .
X X

1 1

wp — — = / {—f(ug}da:Zm/xmuodx

for some positive constant m, since the graph v = f(u) lies

underneath the line v = u/y when « > 0. Thus

z3
O</ wopdx < M/m .

—00



Remark

Suppose there exist a1 < by < ag < by < az < bs... in the

interval [xg — ¢, zo] such that

{ ug < B2 on intervals (a;,b;), i =1,2,... ,
ug = P2 on [JJO —/, 1‘0] \ U?il(aivbi) ,

with both a; — x5 and b; — zy, then ug € Cl[zg — ¢, 20) by

Corner Lemma.



